导航:首页 > 中国资讯 > 中国从月球带回来氚值多少

中国从月球带回来氚值多少

发布时间:2022-05-15 17:18:24

❶ 氚和氘是不是核燃料在月球上的土壤是不是含有大量的氚元素和氘元素

月球表面为岩石,没有水,所以月球富含金属元素和氧元素等,但是没有氢元素,所以就无谈氘氚了

❷ 人类已知月球上的能源有什么

应该是核能
你可以看看下面这篇文章
正当人类为煤炭、石油和天然气等传统化石燃料逐渐枯竭而担忧之时,月球岩土给人们带来无限的希望:科学家们研究美国阿波罗号飞船从月球上取回的岩土发现,岩土中含有大量的氦-3,这是核聚变发电的宝贵燃料。

近些年来新一轮探月活动之所以越来越热闹,除了科学研究方面的强烈追求外,经济利益方面的追求是个重要因素,而大力开发利用月球上的宝贵物质氦-3作为地球上替代能源,则是经济利益追求的一个重要方面。

在地球上靠打能源牌实现强国梦的俄罗斯,也想把这张牌打到月球上去。俄罗斯能源火箭航天集团早就做出明确的计划,要在2015年派载人飞船到月球上建立永久性基地,并着手全力开发利用月球能源。

因快速发展带来能源紧缺的中国,在推动建立节约型社会、努力实现可持续发展的同时,对开发利用月球上的能源也充满了期待,中国探月工程首席科学家欧阳自远就曾多次表明十分看好开发利用月球上的能源。

美国科学界和舆论界对中国和俄罗斯探月活动的意向也十分敏感,在今年2月出版的美国《新闻周刊》上刊载一篇题为《新的月球竞赛》的文章,文中明确指称:在探月方面 “驱使中俄的动力就是能源”。

到月球上建立能源基地,为人类寻找新的替代能源,这是人类共同的理想。

月球传来希望

随着全球经济的快速发展,能源消耗的迅速增加,煤炭、石油和天然气等传统的化石能源面临着枯竭的危险,据专家们预测,传统化石燃料至多能维持到本世纪中期。

人类早就千方百计地从太阳能、水能、风能、生物能中寻找新的替代能源。这些能源都很重要,但专家们认为,它们都有自身的局限性。太阳能的能流密度太低,随昼夜、晴雨、季节的变化很大,难以成为大规模的工业能源,只能满足家庭以及一些特殊需要;水能增长的速度跟不上能耗增长速度,并对生态、生物链产生难以估量的影响;风能、地热能、潮汐能的资源和利用也各有局限,在未来的能源开发中作用不大;生物能倒是一种可以大规模使用的再生能源,但再生速度也难以赶不能源消耗增长的需要。

于是,人们把目光转向了核能,首先寄希望于以原子弹所用的裂变物质铀-235或钚-239进行裂变发电。许多发达国家的核电发展十分迅速,法国的核电能源都占了全部能源的百分之七十多。我国核电发展时间不长,核电运行机组装机容量只占全国发电装机容量的1.59%,累计发电量只占总发电量的2.3%,国家规划要加大发展力度,在今后15年间至少每年要批准建设一座大型核电站。但是,用作核裂变发电的燃料毕竟有限,核污染和核安全虽可以做到有效控制,但总是让人心里不踏实。上世纪80年代前苏联切尔诺贝利核电站事故发生后,就使不少发达国家核电事业的发展停滞了相当长一段时间,直到近几年才有所缓解。

目前,人们正在致力于研究开发可控核聚变发电,其中一个世界性的项目就是“国际热核反应堆”,欧盟和中国、美国、日本、韩国、俄罗斯、印度等国都先后陆续参与,已经过20多年的努力,现正进入艰巨的攻坚阶段。人们对此寄于巨大希望,将它比作“人造太阳”,称之为“21世纪的人传给后代的纪念碑”,并力争在30年到50年之间投入商业化应用。

以这种方式发电目前主要考虑利用从海水中提炼出来的氘和氚作燃料,这种燃料当然十分充足,可以取之不尽,用之不竭。但是,氚本身具有放射性,在氚核反应过程中,伴随核聚变能的产生而产生大量的高能中子,这对核反应装置产生严重的放射性损害,解决这一难题十分困难,因而影响了这一研究开发的进展速度,最好的燃料是氦-3,而地球上的氦-3极为稀缺,估算总量只有几吨到十几吨。

正当人们进行艰苦探索之际,从月球岩土样品的研究中传来喜讯:这些岩土中含有大量的氦-3。

氦-3成为至宝

氦-3是氦的同位素,含有两个质子和一个中子。与氚相比,它是一种清洁、高效、安全的核聚变发电的燃料。它聚变反应的能量大;聚变反应时主要产生高能质子,不会形成强大的中子辐射,对环境保护更为有利;它本身不仅没有放射性,而且反应过程中无缓发中子,无裂变物质,衰变余热小,维修和部件更换更容易,更易于控制,因此受到国际核聚变界的广泛重视。

月球上的氦-3来自太阳风。太阳风由90%的质子(氢核)、7%的高能粒子(氦核)和少量其他元素的原子核组成,氦-3正是太阳风中的高能粒子。月球上没有磁场的干扰和大气层的阻隔,太阳风粒子流能直达月球表面,被月球上的岩土所“吸附”。月球形成已经40多亿年,由于流星和微流星的频繁撞击,月球上的岩土不断翻腾、溅射,在纵向和横向上充分混合,“吸附”了氦-3的岩土也越来越厚。 在月海地区至少有9到10米厚,在月陆地区也有4到5米厚。

月球的直径有3476公里,表面积有3800万平方公里,虽然只有地球表面积的十四分之一,大约相当于中国陆地的四倍,但月球被专家们称为“太阳风粒子收集器”。据测算,月球上的氦-3储量大约有100万吨到500万吨,甚至有人估算有5亿吨。在地球上的大气和天然气中也有少量的氦-3,在核反应中也会产生氦-3,但整个地球上的储量与月球上的储量不可同日而语,所以它对地球人类充满了诱惑力。

据专家们测算,如果在10―15平方公里范围内挖掘并加工深度为3米的月球岩土,就可以提取约1吨的氦-3,足以保证一个功率1000万千瓦的发电机组工作1年。每燃烧1公斤氦-3就可产生19兆瓦的能量,足够供莫斯科市照明用6年多。用美国的航天飞机往返运输,一次可运回20吨液化氦-3,可供美国一年的电力。我国每年大约只需要10吨氦-3,就可以满足全年能源的需要。按照全球目前的能源需求水平,一年有100吨氦-3就能满足全世界的消耗,这些氦-3一年用航天飞机运输三五次就够了。按照这样的推算,月球上的氦-3可以供地球用上几千年甚至上万年。

专家们对在月球上采掘加工氦-3并运回地球发电进行了成本对比分析,得出的结论是在经济上完全划算,因为在发电量相同的情况下,使用月球上的氦-3,其花费只是目前核电站发电成本的10%。如果以目前的石油价格为标准,每吨氦-3价值高达40亿到100亿美元,这真是月球上的无价之宝。

利用氦-3设想

月球上的氦-3储量如此丰富,利用氦-3进行核聚变发电具有如此巨大的优势性,各国专家由此提出了许许多多的设想。

第一类设想是在月球上建立氦-3采掘厂,将采掘加工出来的氦-3运往地球发电。

人们要从地球上运送若干套掘土机、传送带、运载车、分类筛选设备等开采设备到月球,在月球上选择含氦-3较丰富的区域建立采掘加工厂。先将月球岩土开掘出来,经过粉碎筛选,放入真空加热释气炉中,加热到600℃,90%以上的氦气就释放出来了。将这些含有氦-3和氦-4的氦气送入分离设备中进行分离处理,即可得到纯度为99.99%氦-3。再将这些氦-3液化,就可以运回地球。在提取、分离和液化过程中,可以尽可能地利用月球上的太阳能和昼夜温差大等特殊的自然环境,合理降低成本。

在采掘加工好氦-3后,可以用与目前航天飞机大小相当的不载人运输飞船,往返地球和月球之间进行氦-3的运输,一次可运载20吨到30吨液态氦-3回地球。在地球上可建立起美国威斯康星大学设计的托卡马克氦-3核聚变反应堆进行聚变发电。当然,这种反应堆的许多技术还正在研究开发。不过,法国科学家对此充满信心,他们最近宣布,2030年就可以利用氦-3进行核聚变发电,并可实现商业化。

第二类设想是在月球上建立氦-3核聚变发电厂就地发电,并设法传送回地球使用。

为了减少氦-3运输的麻烦,降低发能源供应的成本,不少国家设想将地球上实验使用成熟的核聚变发电设备送往月球,直接在月球上建造核电站,就地利用氦-3发电。这些巨大的电力除供给月球基地使用外,绝大部分通过激光或微波输送到位于近地轨道上的能量中继卫星,由中继卫星仍以激光或微波形式传送到地球电力接收站,再由地球电力接收站分送到全球各地用户。在月球上建造核电站还不必担心核泄漏带来的污染和安全问题。

第三类设想是直接用氦-3,或者是采掘加工氦-3过程中产生的氢气作火箭和飞船的燃料。

由于月球上没有大气的影响,月球的引力也只有地球的六分之一,月球被当作将来向火星等其他星球发射探测器和飞船的理想之地。在这里不必等待发射窗口,所需要的火箭推力也只相当于在地球上发射的六分之一。将来在月球上采掘加工的氦-3可以直接用作火箭或飞船的燃料,地球上的载人飞船也可以到月球上停留加注氦-3作燃料,然后再飞向火星或其他星球。同时,月球土壤中每提取一吨氦-3,还可以得到6300吨的氢,氢也可以作火箭的燃料。

能源基地远眺

随着科学技术的发展,关于开发利用月球上的氦-3的种种设想一定会越来越丰富多彩,越来越详尽具体,越来越接近最终的实践,绝对不会是纸上谈兵或空中楼阁。而且,在月球上建立能源基地不仅仅是开发利用氦-3,月球上的太阳能也有很广阔的开发利用前景。

月球上的太阳能是极为丰富的,因为没有大气层的影响,太阳辐射可以长躯直入,每年到达月球范围的太阳光辐射能量高达12万亿千瓦,相当于目前地球上一年消耗的各种能源所产生的总能量的2.5万倍。采用目前非常成熟的光电转换技术,在月球上进行太阳能发电是比较容易的,而且不必担心土地的占用,在月球上可以无限制地铺设太阳能电池板。

许多专家对在月球上利用太阳能发电都有十分浓厚的兴趣。专家们测算,如果用光电转化率为20%的太阳能发电装置,每平方米太阳电池每小时可发电2.7千瓦时,若采用1000平方米的电池,则每小时可产生2700千瓦时的电能。这些电能同样可以通过激光或微波输送到中继卫星,再传送到地球电力接收站,直至送到全球各地用户。

考虑到月球上白天和黑夜都相当于14个地球日,太阳能发电厂可优先建造在太阳光照时间较长的两极地区。随着月球基地建设的发展,还可以通盘考太阳能发电厂的布局,有的建造在月球的正面,有的建造在月球的背面,形成全球性的并联式太阳能发电厂,太阳能发电厂与核电厂还可以实行联网。这样不仅可以平稳充足地供应月球基地用电,也可以平稳充足地向地球送电。

在可以想象的未来,由氦-3采掘加工厂、核发电厂和太阳能发电厂组成的月球能源基地,不仅可以为月球的长夜带来光明,为月球的开发利用带来强大的动力,也可以为地球的能源接替做出无可估量的贡献,为人类飞向火星等其他星球加油增力。

试看将来的月球,绝不仅仅是供人类欣赏的“冰轮”,而是一个可以推动整个宇宙开发利用的强有力的巨轮!

❸ 中国采集月球土壤,美国为什么感到紧张呢

这是一个非常好的问题,人类史上曾在月球上采集过土壤样本的国家只有美国和前苏联,中国是第三个在月球上采集样本的国家,而且所登陆采集的地点还是一个其他国家从未踏足过,非常年轻且极具研究价值的区域。

具体来说,采集月球土壤样本有两个研究方向非常值得我们重视:

1、通过研究月球土壤样本对月球的成因和演化形成更完善的了解;

2、对人类未来的能源问题取得突破,月球上含有丰富的矿藏资源,据了解月球上含有的氦-3能源极有可能是人类未来能源突破,通过研究月球土壤样本更好的了解这些能源。




试想一下,这么强大的东西,美国能不眼馋心急吗?

据勘测,地球上现勘测出来的氦-3只有区区500公斤左右,而月球上因为没有大气层和磁场对太阳辐射的阻碍,所以月球上预估的氦-3元素有高达70多万吨左右。如果这些通过研究月球土壤岩石样本证实,未来不排除人类技术飞跃发展,开采月球能源,这对未来人类的发展是显而易见的。一旦掌握了,未来人类科技、航天事业等方方面面都将取得巨大突破。

另外目前地球上核聚变所用的氚元素利用率远没有氦-3那么强大,并且数量也不是很多,所以谁先掌握了月球氦-3谁将会在未来地球拥有更多的话语权。这就是为啥美国对中国这次采集月球样本表现积极的原因,美国科学家、俄罗斯科学家早早的就表达了希望中国采集到的样本能够近一点的愿望。

❹ 中国登月都带回来了什么东西

1969年7月20日下午4时17分42秒,载着几名宇航员的“阿波罗”号登月舱缓缓地落在月球表面。几个小时后,美国宇航员阿姆斯特朗打开了舱门,缓缓走下梯子,在月球表面上留下了人类的第一个脚印。自宇宙大爆炸起,静寂的月球终于迎来了第一批人类访客,阿姆斯特朗无疑使人类探索星空的工作又翻开了新的篇章。

美国着名国务卿基辛格访华之际,曾提出用“阿波罗”号飞船带回的月球土壤来换取马王堆女尸周围的木炭样本,并对周总理说道:“这是地球上所没有的东西。”周总理微微一笑道:“你还说你是一个中国通喔,这不就是我们祖先脚下的东西吗?”基辛格诧异道:“啊,你们什么时候登月了?”周总理指着茶几上嫦娥奔月的牙雕说道:“早在5000多年前,就是她登上了月亮啊。”基辛格被逗乐了,为了国际友谊,中国后来也同意了基辛格的要求。

❺ 为什么地球上的氘,氚多的是,却要到月球上采氦

因为工艺的关系,氘、氚虽多,却没有办法利用,现在全世界在都在联合攻关,但是离实用还有很长的路要走,我国在托克马克装置的研究处于国际领先。而氦3在使用方面已经没有障碍。

❻ 从月球土尘中获取氚~3有那么难吗,派无人飞船登月取回,取回来后,和空间站对接,取回后放空间站,由无

从月球带回一克土壤要多少钱?都不是以金子计价了,不是想的那么容易,不然早就有月球旅游了

❼ 为什么地球上的氘、氚多的是,却要到月球上采氦-3做核聚变的燃料

氘和氚发生核聚变的时候会产生富余的中子,中子具有极大的穿透性和对生物杀死性,具体效果你可以参考中子弹,当然这个是持续弱化版的,就跟烧肉与烧烤的区别差不多,但结果都是要命的。氦3不但不会造成中子污染,而且反应温度更低,但是目前这个低温对于我们来讲还是高了些。

❽ 月亮上的核能新秀是什么

一、月球氦能的概念

氦(He)是拉丁语Helium一词的词头,氦本意即为“太阳元素”。1868年,由法国天文学家詹逊在观测日食的时候,在日冕光谱中所发现。这种稀有气体充斥在宇宙空间大气层中。它无色无味,在空气中大约占整个体积的0.0005%,密度只有空气的1/7.2,是除了氢以外密度最小的气体。现时已知的氦同位素有八种,包括3He、4He、5He、6He、8He等,但只有3He和4He是稳定的,其余的均带有放射性。在自然界中,氦同位素中以4He占最多,多是从其他放射性物质的α衰变放出α粒子(4He原子核)而来。3He的含量在地球上极少,而在月球上储量巨大。

目前,地球上核电站所采用的核裂变生产方式危险性很大。如果用核聚变反应来生产能源,不仅单位产量是裂变能的几百倍,而且产生的放射性危险只有裂变过程的万分之一。人类社会进入20世纪90年代之后,科学家利用氢的同位素氘和氚进行控制性核聚变反应,取得突破性的进展。作为这种受控热核反应重要元素的氚,在自然界中并不存在,需要从核反应中获取。因此,科学家提出一个以氦的同位素3He代替氚的新设想。3He含有两个质子和一个中子,在热核聚变反应过程中,3He同具有一个中子和一个质子的氘发生热核聚变,产生的中子很少,可以大大降低热核聚变反应堆的放射性危害。这样,受控热核反应装置既不存在放射性,又可以比用氚反应的体积小、结构简单、造价也低,既可用于地面核电站,而且特别适合宇宙航行。因此,3He被认为是21世纪人类社会的完美燃料。

地球上的3He十分稀缺。在整个地球大气中,氦只占0.0005%;而3He又只占这些氦中的0.00014%,其余的99.99986%都是4He,即使把地球大气中的3He全部分离出来,也只有4000t。而在月球上的情况却大不相同,月球表面覆盖着的一层由岩屑、粉尘、角砾岩和冲击玻璃组成的细小颗粒状物质。这层月壤富含由太阳风粒子积累所形成的气体,如氢、氦、氖、氩、氮等。这些气体在加热到700℃时,就可以全部释放出来。其中,3He在月壤中的资源总量可以达到(100~500)×104t。另据计算,从月壤中每提炼出1t的3He,还可以获得约6300t氢气、700t氮气和1600t含碳气体(CO、CO2)。所以,通过采取一定的技术措施来获得这些气体,对于人类得到新的能源和维持永久性月球基地是十分必要的(图5-5)。

图5-5月球能源基地想象图

二、月氦的成因及分布

月球上的3He全部来自太阳。太阳不断向外喷射出稳定的粒子流,称为“太阳风”,其速度达到100~200km/s。太阳风粒子流在经过地球附近时,由于受到地球磁场的排斥和大气层的阻挡而发生偏转,只有极少量的粒子能到达地球。月球既无磁场,又无大气,太阳风粒子能自由地抵达月球表面,在月球表面土壤上形成覆盖层。月球表面经过亿万年流星和微流星的撞击,表层的土壤得以混合掺杂,以致整个月球表面都不同程度地“沾染”上太阳风的粒子。太阳风由90%的质子(氢核),7%的α粒子(氦核)和少量其他元素的原子核组成。月球上的3He正是太阳风中的α粒子形成的。

太阳风粒子可以直接照射月球表面而被月壤层捕获,在漫长的月球地质历史过程中使得月壤层积累了丰富的3He。3He含量主要受制于两个过程:太阳风粒子注入3He与月壤的脱气作用(outgassing)。如果月表面没有对太阳风粒子注入饱和,3He含量取决于月表面的太阳风。再则,3He含量受制于月壤吸附与保持3He的能力,即月壤的脱气作用,该因素与月壤的结构和化学成分有关。

由于太阳风是月壤中3He的唯一来源,它的强度表现出全月球纬度向的变化,与太阳风射线成一角度的月表面就要受到较少的太阳风粒子照射。当月球进入地球磁尾并偏转太阳风时,月球正面比月球背面接受的太阳风要少一些,使得3He在经度向上有变化。

影响3He含量的第二个因素是月表面土壤的成熟度,即月表面土壤暴露在空间环境中经受了多长的时间。在太阳风空间环境中,月表面土壤粒子大小减小,胶合能力加强,使得月表面土壤3He含量增加。描述月壤成熟过程的定义有几个不同的特征指数,多采用光学成熟度OMAT(optical maturity)来表示月表面土壤的成熟度。

第三个因素是TiO2含量。月球土壤中不同成分(如钛铁矿、橄榄石、辉石、斜长石等)的同一大小粒子含有3He是不同的,其中钛铁矿含3He要高出10~100倍。由于大多数TiO2是在钛铁矿中,TiO2含量作为钛铁矿的一个示踪物,成为3He含量的一个特征指数。

月球正面月海区域由于TiO2含量高,可能有较高的3He含量,尽管那里由于地球磁尾的遮蔽而接受到的太阳风粒子较少。在月海区域可有最大的3He含量,可高达30ng/g。与月球正面月陆区域相比,月球背面月陆区域可有较高的3He含量,主要是月球背面太阳风强。月球极地区域3He含量较少,是因为该处太阳风照射比较弱。

三、月球氦能的利用

核聚变反应有多种,例如,可用氢的同位素氘聚变生成氦,或者用氢的两种同位素氘和氚聚变生成氦。这两种聚变反应虽均可产生大量能量,但也会释放出大量中子或质子,而且还要求反应温度不低于5×108℃,所以很难在实际工程中实施。然而,利用氘和3He聚变生成氦,在聚变过程中,除产生大量能量外,它没有释放中子的问题。因为,氘“多余”的一个中子,在反应过程中,正好被3He吸收而生成氦。而且,所需要的反应温度,也只是目前实验室已达到温度的2倍。所以,它是一种安全、干净、相对来说也比较容易实现的可控核聚变反应。商业经济性分析表明,氘-3He核(聚变)电站,完全可以同核(裂变)电站和火力发电站相竞争。理想的核聚变燃料应该蕴藏丰富,易于获取,释放能量大。氘在天然水中含量丰富,提纯也不困难。氘在水中所占的比例是1∶6500,全世界总储量达1013t。因此,月球上3He提供了新的能源(江燕,1996)。

核聚变反应不仅能够应用于产生电能,而且还可以用于作为火箭推动器的燃料。在氘-3He的核聚变反应中不仅释放14MeV的质子,而且还可以产生超过106s的比冲(火箭发动机单位重量推进剂产生的冲量,也叫比冲量)。这种性能是通过在火箭推动器排气口上加入冷却物质来实现降低火箭推动力实现的。同时也可以通过降低脉冲来增加火箭推动力。因此,核聚变火箭推动器可以在火箭飞行器用核引擎模式下运行加热氢气到高温来产生高的推动力和低的脉冲。也就是说,火箭推动器在运行时,其运行模式可以在一定范围内进行调节。在脱离重力场过程中可以使用较高推动力来完成,而当飞船处于失重状态时,则可以转化成高比冲调节操作。

至于如何把3He从月球拿回来,科学家也有了设想:第一步是要开展资源勘查工作,看月球表面什么地方3He最集中。在此之后才能进行试验性的开采并考虑在月球上建工厂。首先,需要专门的机械去收集月球表面上的土,再将这些土加热至600℃之后,就会分离出气体氦,然后从氦分离出它的同位素3He。下一步就得将3He气体液化,以便于运输。最后一步是将液化的3He用航天飞机运回地球。一般来说,航天飞机一昼夜便能一次性将20t的3He运回地球。全球每年所需能量原料只需航天飞机飞四五次(2.5亿~3亿美元/次),所以月壤中的3He具有巨大的开发利用前景。虽说开采和运输3He的方案非常复杂,需要花费很大的劳动力,而且耗资巨大,但确是可以实现的。据科学家计算,利用月球开发的3He发电成本只是现在核电站发电成本的1/10(宋成文和刘瑀,2009)。

四、月氦的发展

2013年12月“嫦娥三号”成功奔月,令无数华人又心潮澎湃地骄傲了一把。观看了发射全程的人们在感慨人类智慧伟大的同时,也提出了疑问题:利用月球资源距离我们尚远,那么探月工程当下到底对人们有什么实用价值?公开的数据显示,“嫦娥一号”投入14亿元人民币,“嫦娥三号”迄今共投入9亿元人民币,“嫦娥二号”的投入尚未公布。相对于巨额的投入,探月技术所带来的经济价值不可估量。

中国航天科技集团提供的一份数据表明,我国近年来的1000多种新材料中,80%是在空间技术的牵引下研制完成的;有近2000项空间技术成果已移植到国民经济各个部门。目前,空间生命科学与微重力科学、太空旅游、空间材料学等领域仍处于由政府投资研究、试验和探索阶段。中国科学院院士胡文瑞展望将来可能产生的效益时举例说:“美国以‘沸石’作为催化剂炼油,科学家们以提高炼制效率百分之一为目标,在空间展开研究,如果成功,按照美国每年炼油花费900亿美元来算,一年可节约9亿美元;我国科学家也有相应的计划,我国一年需要约20亿吨煤,如果能通过空间试验把燃煤效率提高千分之一,按每吨煤400元人民币计算,每年就是8亿元的效益……而在生命科学等领域如果能有突破性成果,人类的健康和生活将可能出现质的飞跃,这是用数字无法衡量的了。”

“嫦娥二号”的火箭发动机技术所衍生出的技术已应用于环保和人们的食住行等各个领域。经过成果转化后,“嫦娥”奔月将为人类带来众多像氦能这样新的绿色馈赠(水蓝天,2014)。

目前除了中国正积极发展自身的探月技术之外,包括美国在内的西方国家也在酝酿开采月球资源的计划。世界各国纷纷进行探月竞争的原因之一,即是为了确保拥有被认为是下一代核聚变发电燃料的3He。

不过,人类想要获得纯净、清洁的3He还有很长的路要走。英国伦敦大学学院马拉德空间科学实验室行星科学部门负责人安德鲁?科茨对利用3He的可行性提出了质疑,至少地球与月球之间的运输方式尚不完善。他说:“我们在地球上尚未实现聚变发电。这是一个好主意,但还是空中楼阁。”的确,以人类现有的技术和能力,目前还无法做到用3He来作为人类使用的能源,比如说,目前大规模受控核聚变的技术尚不具备等。但是随着科技的不断发展,科学家相信会克服这些困难,最终实现对月采矿的伟大工程。因此,有些国外的科学家认为,要实现这个目标需要联合世界上最好的科研力量,当然也还需要足够的资金支持(刘辉,2014)。

❾ 嫦娥五号将带回稀有物质,100吨够全球用一年,那究竟是什么

目前,我国的嫦娥五号已经带着2公斤月球土壤飞离月球,进入环绕月球飞行的预定轨道。待到合适的时间窗口,它将启程返回地球,为我们带回极为珍贵的月壤。

嫦娥五号挖到的土并不是一般的土,这引起了很多科学家的极大兴趣。此前,美国宇航局(NASA)的阿波罗载人登月任务带回的月岩都十分古老,年龄普遍达到了31.6亿年。而嫦娥五号登陆了一个比较年轻的月表区域,在那里可以挖到大约12亿年前的月壤,填补月球时间空白,这能让科学家进一步揭开月球的演化之谜。

由此可见,嫦娥五号任务对我国的探月乃至深空探测意义重大。月球或将迎来人类激烈的竞争,我们不能再错过眼下的“大航天时代”。

❿ 地球上可以生产氚的元素没有月球上的氦3多

中国科学院院士、中国绕月探测工程首席科学家欧阳自远在接受新华社记者采访时表示,研究发现,月球表面土壤中富含大量的氦3,初步估计有上百万吨。目前科学家正在利用氘-氚建立核聚变实验堆,而利用氘-氦3参与的核聚变发电向人类提供能源,是科学家目前正在研究的课题。作为核聚变中必不可少、安全的核聚变燃料,氦3在地球上分布极少,“可以说基本上没有”。在核聚变发电商业化的前提下,如果能够解决将氦3运回地球这一问题的话,8吨的氦3可解决全中国一年的能源供应总量。月球上百万吨的氦3为全人类提供几千年的能源是没有问题的。

阅读全文

与中国从月球带回来氚值多少相关的资料

热点内容
中国导弹有多少 浏览:1054
英国病亡人数多少 浏览:1462
查伊朗人口一年平均收入多少 浏览:885
印尼1美元能买什么 浏览:673
越南有什么特殊市场 浏览:528
英国贵族怎么消亡的 浏览:553
印度人怎么犁地的 浏览:791
印度历史背景是什么 浏览:1041
英国背景提升机构如何办理 浏览:796
如何去印度治疗牛皮癣 浏览:660
越南最多的厂在哪里 浏览:1477
怎么买伊朗石化产品 浏览:1414
美国和伊朗到底什么时候打 浏览:1237
送给越南女孩子什么礼物 浏览:1150
如何解决印度雇佣童工的问题 浏览:1472
番茄意大利面怎么做最简单还好吃 浏览:504
印尼石油公司叫什么名字 浏览:830
印度没有冰箱怎么存放食物 浏览:794
意大利牧歌有哪些作曲大家 浏览:642
印尼地震了多少人 浏览:536