导航:首页 > 观意大利 > 哪个意大利数学家研究了虚数

哪个意大利数学家研究了虚数

发布时间:2022-07-02 03:13:26

Ⅰ 虚数是什么 举一个例子有哪些

在数学中,虚数就是形如a+b*i的数,其中a、b是实数,且b≠0,i = - 1。

虚数这个名词是17世纪着名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内地点(a,b)对应。

可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。

例如:(1)2+3i就表示一个复数,2是实部,3i表示虚部,3i就表示一个纯虚数;

(2)-1的开方就是虚数,称为一个虚数单位。

虚数的由来:

随着数学的发展,数学家发现一些三次方程的实数根还非得用负数的平方根表示不可,而且如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这样一个令人满意的结果,此外对负数的平方根按数的运算法则进行运算,结果也是正确的。

意大利数学家卡尔丹作出一个折中,表示他称负数的平方根为 “虚构的数”,意思是可以承认它为数,但不像实数那样可以表示实际存在的量,而是虚构的,到了1632年,法国数学家笛卡儿正式给了负数的平方根,一个大家乐于接受的名字——虚数。

虚数的虚字,表示它不代表实际的数,而只存在于想象之中,尽管虚数是 “虚”的,但数学家却没有放松对它的研究。

他们发现了关于虚数的许许多多的性质和应用,大数学家欧拉提出了 “虚数单位”的概念,他把U作为虚数单位,用符号i表示,相当于实数的单位1,虚数有了单位,就能像实数一样写成虚数单位倍数的形式了。

从此数学家把实数与虚数同等对待,并合称为复数,于是数的家族得到了统一,任何一个复数可以写成a+bi的形式,当b=0时,a+bi=a,它就是实数当;b#0时,a+bi就是虚数了。

以上内容参考:网络-虚数

Ⅱ 虚数的来源

在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。[2]

起源
要追溯虚数出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。

有理数是伴随人们的生产实践而产生的。

实轴和虚轴
无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。

不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与边长的比不能用任何“数”来表示。西亚他们已经发现了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。

“虚数”这个名词是17世纪着名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。

人们发现即使使用全部的有理数和无理数,也不能解决代数方程的求解问题。像x²+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。

到了16世纪,意大利数学家卡尔达诺在其着作《大术》(《数学大典》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。

Ⅲ 虚数和邦贝利两者之间有什么

分析术杰出大师邦贝利

虚数的引入是人类在对数的认识过程中向前跨出的一大步,“虚数”这一名词是由笛卡尔在他的《几何》中首先创用的,大数学家欧拉最先引进了虚数符号“i”。在虚数的引入和应用过程中我们还应该提到另一个人的名字,那就是意大利数学家邦贝利。

Ⅳ 虚数是如何发现的

从自然数逐步扩大到了实数,数是否“够用”了?够不够用,要看能不能满足实践的需要。

在研究一元二次方程x2+1=0时,人们提出了一个问题:我们都知道在实数范围内x2+1=0是没有解的,如果硬把它解算一下,看看会得到什么结果呢?

由x2+1=0,得x2=-1。

两边同时开平方,得x=±-1(通常把-1记为i)。

-1是什么?是数吗?关于这个问题的正确回答,经历了一个很长的探索过程。

16世纪意大利数学家卡尔丹和邦贝利在解方程时,首先引进了-1,对它还进行过运算。

17世纪法国数学家和哲学家笛卡儿把-1做”虚数”,意思是“虚假的数”、“想象当中的,并不存在的数”。他把人们熟悉的有理数和无理数叫做“实数”,意思是“实际存在的数”。

数学家对虚数是什么样的数,一直感到神秘莫测。笛卡儿认为:虚数是“不可思议的”。大数学家莱布尼兹一直到18世纪还以为“虚数是神灵美妙与惊奇的避难所,它几乎是又存在又不存在的两栖物”。

随着数学研究的进展,数学家发现像-1这样的虚数非常有用,后来把形如2+3-1,6-5-1,一般地把a+b-1记为a+bi,其中a,b为实数,这样的数叫做复数。

当b=0时,就是实数;

当b≠0时,叫做虚数。

当a=0,b≠0时,叫做纯虚数。

虚数作为复数的一部分,也是客观存在的一种数,并不是虚无飘渺的。由于引进了虚数单位-1=i,开阔了数学家的视野,解决了许多数学问题。如负数在复数范围内可以开偶次方,因此在复数内加、减、乘、除、乘方、开方六种运算总是可行的;在实数范围内一元n次方程不一定总是有根的,比如x2+1=0在实数范围内就无根。但是在复数范围内一元n次方程总有几个根。复数的建立不仅解决了代数方面的问题,也为其他学科和工程技术解决了许多问题。

自然数、整数、有理数、实数、复数,人类认识的数,在不断地向外膨胀。

随着数概念的扩大,数增添了许多新的性质,但是也减少了某些性质。比如在实数范围内,数之间是可以比较大小的,可是在复数范围内,数之间已经不能比较大小了。

所谓能比较大小,就是对于规定的“>”关系能满足下面四条性质:

(1)对于任意两个不同的实数。a和b,或a>b,或b>a,两者不能同时成立。

(2)若a>b,b>c,则a>c

(3)若a>b,则a+c>b+c

(4)若a>b,c>0,则ac>bc

对于实数范围内的数,“>”关系是满这四条性质的。但对于复数范围内,数之间是否能规定一种“>”关系来满足上述四条性质呢?答案是不能的,也就是说复数不能比较大小。

为了证明这个结论,我们需要交待复数运算的部分内容,证明中要用到它:

(1)-1·-1=-1-1·0=0

--1·0=0

(--1)·(--1)=-1

-1+(--1)=0

0+(--1)=--1

(2)复数中的实数仍按实数的运算法则进行运算。

现在用反证法证明复数不能比较大小。假设我们找到了一种“>”关系(注意:“>”关系不一定是实数中规定的含义)来满足上述四条性质。当然对于-1应具有性质(1):

-1>0或0<-1

先证明-1>0不可能。

-1>0的两边同乘-1,由性质(4)得:

-1·-1>-1·0

-1>0

(注意:由于“>”不一定是实数各规定的含义,故未导出矛盾。)

-1>0的两边同加1,由性质(3)得:

-1+1>0+1

0>1

-1>0的两边同乘-1,由性质(4)得:

(-1)·(-1)>(-1)·0

1>0

于是得到0>1,而且1>0,也就是0与1无法满足性质(1),这与假设形成矛盾,所以-1>0是不可能的。

其次证明0>-1不可能。

0>-1的两边同加--1,由性质(3)得:

0+(--1)>-1+(--1)

--1>0

--1>0的两边同乘--1,由性质(4)得:

(--1)·(--1)>(--1>)·0

-1>0

以下可依第一种情况证明,导出矛盾,所以0>-1不可能。

以上证明从复数中取出两个数-1与0是无法比较大小的,从而证明了复数没有大小关系。

复数无大小,听来新鲜,确是事实!

Ⅳ 复数的来历

“复数”、“虚数”这两个名词,都是人们在解方程时引入的。为了用公式求一元二次、三次方程的根,就会遇到求负数的平方根的问题。1545年,意大利数学家卡丹诺(GirolamoCardano,1501年~1576年)在《大术》一书中,首先研究了虚数,并进行了一些计算。1572年,意大利数学家邦别利(RafaclBombclli,1525年~1650年)正式使用“实数”“虚数”这两个名词。此后,德国数学家莱布尼兹(GottfriedWilbclmLcibniz,1646年~1716年)、瑞士数学家欧拉(LeonhardEuler,1707年~1783年)和法国数学家棣莫佛(AbrabamdeMoivre,1667年~1754年)等又研究了虚数与对数函数、三角函数等之间的关系,除解方程以外,还把它用于微积分等方面,得出很多有价值的结果,使某些比较复杂的数学问题变得简单而易于处理。大约在1777年,欧拉第一次用i来表示-1的平方根,1832年,德国数学家高斯(CarlFricdrichGauss,1777年~1855年)第一次引入复数概念,一个复数可以用a+bi来表示,其中a,b是实数,i代表虚数单位,这样就把虚数与实数统一起来了。高斯还把复数与复平面内的点一一对应起来,给出了复数的一种几何解释。不久,人们又将复数与平面向量联系起来,并使其在电工学、流体力学、振动理论、机翼理论中得到广泛的实际应用,然后,又建立了以复数为变数的“复变函数”的理论,这是一个崭新而强有力的数学分支,所以我们应该深刻认识到了“虚数不虚”的道理。
16世纪意大利米兰学者卡当(Jerome Cardan1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成=40,尽管他认为和这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40。给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来。

数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家莱布尼茨(1646—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。瑞士数学大师欧拉(1707—1783)说;“一切形如,习的数学武子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达朗贝尔(1717—1783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是的形式(a、b都是实数)(说明:现行教科书中没有使用记号=-i,而使用=一1)。法国数学家棣莫佛(1667—1754)在1730年发现公式了,这就是着名的棣莫佛定理。欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示一1的平方根,首创了用符号i作为虚数的单位。“虚数”实际上不是想象出来的,而它是确实存在的。挪威的测量学家成塞尔(1745—1818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。

德国数学家高斯(1777—1855)在1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数a+bi。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”。高斯在1831年,用实数组(a,b)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。

经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不虚呵。虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集。

Ⅵ 虚数是什么

虚数是指平方是负数的数。虚数这个名词是17世纪着名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。

目录

简要介绍
公式三角函数
四则运算
共轭复数
乘方
数学中的虚数实际意义
起源
i的性质
有关运算
符号来历
相关描述
简要介绍
公式 三角函数
四则运算
共轭复数
乘方
数学中的虚数 实际意义
起源
i的性质
有关运算
符号来历
相关描述
展开 编辑本段简要介绍
实轴和虚轴
虚数可以指以下含义: (1)[unreliable figure]:虚假不实的数字。 (2)[imaginary part]:复数中a+bi,b叫虚部,a叫实部。 (3)[imaginary number]:汉语中不表明具体数量的词。 如果有数平方是负数的话,那个数就是虚数了;所有的虚数都是复数。“虚数”这个名词是17世纪着名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复数平面,复平面上每一点对应着一个复数。
编辑本段公式
三角函数
sin(a+bi)=sinacosbi+sinbicosa =sinachb+ishbcosa cos(a-bi)=coscosbi+sinbisina =cosachb+ishbsina tan(a+bi)=sin(a+bi)/cos(a+bi) cot(a+bi)=cos(a+bi)/sin(a+bi) sec(a+bi)=1/cos(a+bi) csc(a+bi)=1/sin(a+bi)
四则运算
(a+bi)±(c+di)=(a±c)+(b±d)i (a+bi)(c+di)=(ac-bd)+(ad+bc)i (a+bi)/(c+di)=(ac+bd)/(c^2+d^2)+(bc-ad)/(c^2+d^2)i r1(isina+cosa)r2(isinb+cosb)=r1r2(cos(a+b)+isin(a+b) r1(isina+cosa)/r2(isinb+cosb)=r1/r2(cos(a-b)+isin(a-b)) r(isina+cosa)^n=r^n(isinna+cosna)
共轭复数
_(a+bi)=a-bi _(z1+z2)=_z1+_z2 _(z1-z2)=_z1-_z2 _(z1z2)=_z1_z2 _(z^n)=(_z)^n _z1/z2=_z1/_z2 _z*z=|z|^2∈R
乘方
z^mz^n=z^(m+n) z^m/z^n=z^(m-n) (z^m)^n=z^mn z1^mz2^m=(z1z2)^m (z^m)^1/n=z^m/n z*z*z*…*z(n个)=z^n z1^n=z2-->z2=z1^1/n logai(x)=1/ iπ/2 ln(x)+logx(e) a^(ai+b)=a^ai*a^b = a^b[cosln(x^n) + i sinln(x^n). ]
编辑本段数学中的虚数
在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。
实际意义
我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实 虚数
轴和虚轴。 不能满足于上述图像解释的同学或学者可参考以下题目和说明: 若存在一个数,它的倒数等于它的相反数(或者它的倒数的相反数为其自身),这个数是什么形式? 根据这一要求,可以给出如下方程: -x = (1/x) 不难得知,这个方程的解x=i (虚数单位) 由此,若有代数式 t'=ti,我们将i理解为从t的单位到t'的单位之间的转换单位,则t'=ti将被理解为 -t' = 1/t 即 t' = - 1/t 这一表达式在几何空间上的意义不大,但若配合狭义相对论,在时间上理解,则可以解释若相对运动速度可以大于光速c,相对时间间隔产生的虚数值,实质上是其实数值的负倒数。也就是所谓回到过去的时间间隔数值可以由此计算出来。 虚数成为微晶片和数字压缩算法设计中的核心工具,虚数是引发电子学革命的量子力学的理论基础。
起源
要追溯虚数出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。 有理数出现的非常早,它是伴随人们的生产实践而产生的。 无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。 不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与连长的比不能用任何“数”来表示。西亚他们已经发同了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。 “虚数”这个名词是17世纪着名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。 人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x^2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。 到了16世纪,意大利数学家卡尔达诺在其着作《大术》(《数学大典》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。 1545年意大利米兰的卡尔达诺发表了文艺复兴时期最重要的一部代数学着作,提出了一种求解一般三次方程的求解公式: 形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3) 当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3) 在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。 直到19世纪初,高斯系统地使用了i这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。 由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说:“一切形如,√-1,√-2的数学式子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”

Ⅶ 虚数的定义

虚数可以指以下含义: (1)[unreliable figure]:虚假不实的数字。
(2)[imaginary part]:复数中a+bi,b不等于零时bi叫虚数。
(3)[imaginary number]:汉语中不表明具体数量的词。 [编辑本段]数学中的虚数在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。
这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 [编辑本段]虚数的实际意义我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 [编辑本段]起源“虚数”这个名词是17世纪着名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。
到了16世纪,意大利数学家卡当在其着作《大法》(《大衍术》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。
1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学着作,提出了一种求解一般三次方程的求解公式:
形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)
当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3)
在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。
直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。
由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如
继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。 [编辑本段]i的性质i 的高次方会不断作以下的循环:
i^1 = i
i^2 = - 1
i^3 = - i
i^4 = 1
i^5 = i
i^6 = - 1...
由于虚数特殊的运算规则,出现了符号i
当ω=(-1+√3i)/2或ω=(-1-√3i)/2时:
ω^2 + ω + 1 = 0
ω^3 = 1
许多实数的运算都可以推广到i,例如指数、对数和三角函数。
一个数的ni次方为:
x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)).
一个数的ni次方根为:
x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))).
以i为底的对数为:
log_i(x) = 2 ln(x)/ i*pi.
i的余弦是一个实数:
cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064.
i的正弦是虚数:
sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i.
i,e,π,0和1的奇妙关系:
e^(i*π)+1=0
i^I=e^(-π÷2) [编辑本段]符号来历1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。
通常,我们用符号C来表示复数集,用符号R来表示实数集。 [编辑本段]相关描述虚数 原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院)
翻译:徐国强
虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。
IMAGINARY by Lawrence Mark LesserArmstrong Atlantic State University
Imaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I'm using right now -- A.C.!You say it's absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i."
[①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致[1]

参考资料:
《人文数学网络期刊》22期48页

开放分类:
词语,数学,词汇,数词,复数

Ⅷ 纯虚数是什么

一、性质不同

1、纯虚数:一个实数乘以i称为纯虚数。

2、虚数:在复数域中,负数-1的平方根记为i(即i²=-1)。

二、计算方式不同

1、纯虚数计算方式:当a=0,b≠0时,叫作纯虚数。

2、虚数计算方式:当b≠0时,叫作虚数。

三、表达形式不同

1、纯虚数表达形式:z=bi(b≠0)

2、虚数表达形式:a=a+i



(8)哪个意大利数学家研究了虚数扩展阅读:

虚数的发展历史:

16世纪,意大利数学家卡尔达诺在着作《《大术》(《数学大典》)中,写下了1545R15-15m。这是最早的虚数标记。但卡尔达诺认为这只是一个正式的表达。

1637年,法国数学家笛卡尔在几何学中首次给出“虚数”的名称,并对应于“实数”。

1843年,威廉·罗文·汉密尔顿将平面中虚轴的概念扩展到四元数的虚四维空间,其中三个与复数域中的虚数相似。

Ⅸ 虚数的历史地位是如何确定的

“虚数”这个名词是17世纪着名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。 人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x^2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。 到了16世纪,意大利数学家卡当在其着作《大法》(《大衍术》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。 1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学着作,提出了一种求解一般三次方程的求解公式: 形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3) 当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3) 在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。 直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。 由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说:“一切形如,√-1,√-2的数学式子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。” 继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。

Ⅹ 什么是虚数它和实数有什么区别

实数,是有理数和无理数的总称。实数可以分为有理数和无理数两类,或代数数和超越数两类。

在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。

虚数这个名词是17世纪着名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。

(10)哪个意大利数学家研究了虚数扩展阅读

像x+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数。

因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。

到了16世纪,意大利数学家卡尔达诺在其着作《大术》(《数学大典》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。

阅读全文

与哪个意大利数学家研究了虚数相关的资料

热点内容
越南语微信怎么注册 浏览:100
哪个国收到中国口罩了 浏览:841
印度人为什么叫西天 浏览:678
男人去越南为什么不想回来 浏览:535
去英国上大学要带什么东西 浏览:184
华友钴业印尼前景怎么样 浏览:296
印尼螃蟹怎么杀 浏览:149
伊朗钱叫什么意思 浏览:579
越南哪里可以免费玩 浏览:872
越南和意大利哪个大 浏览:371
英国保证金需要多少钱 浏览:818
越南开挂车多少工资 浏览:493
越南绿豆饼特产一个多少钱 浏览:890
印度半岛南临什么海 浏览:580
英国二战起了什么作用 浏览:930
印尼宽带中国联通版什么梗 浏览:361
晴用意大利语怎么说 浏览:783
伊朗地名猫叫什么 浏览:575
越南平原占多少山区占多少 浏览:585
中国电信宽带网速怎么样 浏览:65